
10.1 | Rotational Variables

Learning Objectives

By the end of this section, you will be able to:

• Describe the physical meaning of rotational variables as applied to fixed-axis rotation

• Explain how angular velocity is related to tangential speed

• Calculate the instantaneous angular velocity given the angular position function

• Find the angular velocity and angular acceleration in a rotating system

• Calculate the average angular acceleration when the angular velocity is changing

• Calculate the instantaneous angular acceleration given the angular velocity function

So far in this text, we have mainly studied translational motion, including the variables that describe it: displacement,
velocity, and acceleration. Now we expand our description of motion to rotation—specifically, rotational motion about
a fixed axis. We will find that rotational motion is described by a set of related variables similar to those we used in
translational motion.

Angular Velocity
Uniform circular motion (discussed previously in Motion in Two and Three Dimensions) is motion in a circle at
constant speed. Although this is the simplest case of rotational motion, it is very useful for many situations, and we use it
here to introduce rotational variables.

In Figure 10.2, we show a particle moving in a circle. The coordinate system is fixed and serves as a frame of reference to
define the particle’s position. Its position vector from the origin of the circle to the particle sweeps out the angle θ , which

increases in the counterclockwise direction as the particle moves along its circular path. The angle θ is called the angular

position of the particle. As the particle moves in its circular path, it also traces an arc length s.

Figure 10.2 A particle follows a circular path. As it moves
counterclockwise, it sweeps out a positive angle θ with respect

to the x-axis and traces out an arc length s.

The angle is related to the radius of the circle and the arc length by

(10.1)θ = s
r .
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The angle θ , the angular position of the particle along its path, has units of radians (rad). There are 2π radians in 360°.
Note that the radian measure is a ratio of length measurements, and therefore is a dimensionless quantity. As the particle
moves along its circular path, its angular position changes and it undergoes angular displacements Δθ.

We can assign vectors to the quantities in Equation 10.1. The angle θ
→

is a vector out of the page in Figure 10.2. The

angular position vector r→ and the arc length s→ both lie in the plane of the page. These three vectors are related to

each other by

(10.2)s→ = θ
→

× r→ .

That is, the arc length is the cross product of the angle vector and the position vector, as shown in Figure 10.3.

Figure 10.3 The angle vector points along the z-axis and the
position vector and arc length vector both lie in the xy-plane. We

see that s→ = θ
→

× r→ . All three vectors are perpendicular

to each other.

The magnitude of the angular velocity, denoted by ω , is the time rate of change of the angle θ as the particle moves in its

circular path. The instantaneous angular velocity is defined as the limit in which Δt → 0 in the average angular velocity

ω– = Δθ
Δt :

(10.3)ω = lim
Δt → 0

Δθ
Δt = dθ

dt ,

where θ is the angle of rotation (Figure 10.2). The units of angular velocity are radians per second (rad/s). Angular

velocity can also be referred to as the rotation rate in radians per second. In many situations, we are given the rotation rate
in revolutions/s or cycles/s. To find the angular velocity, we must multiply revolutions/s by 2π , since there are 2π radians

in one complete revolution. Since the direction of a positive angle in a circle is counterclockwise, we take counterclockwise
rotations as being positive and clockwise rotations as negative.

We can see how angular velocity is related to the tangential speed of the particle by differentiating Equation 10.1 with
respect to time. We rewrite Equation 10.1 as

s = rθ.

Taking the derivative with respect to time and noting that the radius r is a constant, we have

ds
dt = d

dt(rθ) = θdr
dt + rdθ

dt = rdθ
dt

where θdr
dt = 0 . Here ds

dt is just the tangential speed vt of the particle in Figure 10.2. Thus, by using Equation 10.3,

we arrive at
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(10.4)vt = rω.

That is, the tangential speed of the particle is its angular velocity times the radius of the circle. From Equation 10.4,
we see that the tangential speed of the particle increases with its distance from the axis of rotation for a constant angular
velocity. This effect is shown in Figure 10.4. Two particles are placed at different radii on a rotating disk with a constant
angular velocity. As the disk rotates, the tangential speed increases linearly with the radius from the axis of rotation. In
Figure 10.4, we see that v1 = r1 ω1 and v2 = r2 ω2 . But the disk has a constant angular velocity, so ω1 = ω2 . This

means
v1
r1

= v2
r2

or v2 = ⎛
⎝
r2
r1

⎞
⎠v1 . Thus, since r2 > r1 , v2 > v1 .

Figure 10.4 Two particles on a rotating disk have different tangential
speeds, depending on their distance to the axis of rotation.

Up until now, we have discussed the magnitude of the angular velocity ω = dθ/dt, which is a scalar quantity—the change

in angular position with respect to time. The vector ω→ is the vector associated with the angular velocity and points along

the axis of rotation. This is useful because when a rigid body is rotating, we want to know both the axis of rotation and the

direction that the body is rotating about the axis, clockwise or counterclockwise. The angular velocity ω→ gives us this

information. The angular velocity ω→ has a direction determined by what is called the right-hand rule. The right-hand rule

is such that if the fingers of your right hand wrap counterclockwise from the x-axis (the direction in which θ increases)

toward the y-axis, your thumb points in the direction of the positive z-axis (Figure 10.5). An angular velocity ω→ that

points along the positive z-axis therefore corresponds to a counterclockwise rotation, whereas an angular velocity ω→ that

points along the negative z-axis corresponds to a clockwise rotation.
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Figure 10.5 For counterclockwise rotation in the coordinate
system shown, the angular velocity points in the positive
z-direction by the right-hand-rule.

Similar to Equation 10.2, one can state a cross product relation to the vector of the tangential velocity as stated in
Equation 10.4. Therefore, we have

(10.5)v→ = ω→ × r→ .

That is, the tangential velocity is the cross product of the angular velocity and the position vector, as shown in Figure 10.6.
From part (a) of this figure, we see that with the angular velocity in the positive z-direction, the rotation in the xy-plane is
counterclockwise. In part (b), the angular velocity is in the negative z-direction, giving a clockwise rotation in the xy-plane.

Figure 10.6 The vectors shown are the angular velocity, position, and tangential velocity.
(a) The angular velocity points in the positive z-direction, giving a counterclockwise rotation
in the xy-plane. (b) The angular velocity points in the negative z-direction, giving a
clockwise rotation.
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Example 10.1

Rotation of a Flywheel

A flywheel rotates such that it sweeps out an angle at the rate of θ = ωt = (45.0 rad/s)t radians. The wheel

rotates counterclockwise when viewed in the plane of the page. (a) What is the angular velocity of the flywheel?
(b) What direction is the angular velocity? (c) How many radians does the flywheel rotate through in 30 s? (d)
What is the tangential speed of a point on the flywheel 10 cm from the axis of rotation?

Strategy

The functional form of the angular position of the flywheel is given in the problem as θ(t) = ωt , so by taking the

derivative with respect to time, we can find the angular velocity. We use the right-hand rule to find the angular
velocity. To find the angular displacement of the flywheel during 30 s, we seek the angular displacement Δθ ,

where the change in angular position is between 0 and 30 s. To find the tangential speed of a point at a distance
from the axis of rotation, we multiply its distance times the angular velocity of the flywheel.

Solution

a. ω = dθ
dt = 45 rad/s . We see that the angular velocity is a constant.

b. By the right-hand rule, we curl the fingers in the direction of rotation, which is counterclockwise in the
plane of the page, and the thumb points in the direction of the angular velocity, which is out of the page.

c. Δθ = θ(30 s) − θ(0 s) = 45.0(30.0 s) − 45.0(0 s) = 1350.0 rad .

d. vt = rω = (0.1 m)(45.0 rad/s) = 4.5 m/s .

Significance

In 30 s, the flywheel has rotated through quite a number of revolutions, about 215 if we divide the angular
displacement by 2π . A massive flywheel can be used to store energy in this way, if the losses due to friction are

minimal. Recent research has considered superconducting bearings on which the flywheel rests, with zero energy
loss due to friction.

Angular Acceleration
We have just discussed angular velocity for uniform circular motion, but not all motion is uniform. Envision an ice skater
spinning with his arms outstretched—when he pulls his arms inward, his angular velocity increases. Or think about a
computer’s hard disk slowing to a halt as the angular velocity decreases. We will explore these situations later, but we can
already see a need to define an angular acceleration for describing situations where ω changes. The faster the change in

ω , the greater the angular acceleration. We define the instantaneous angular acceleration α as the derivative of angular

velocity with respect to time:

(10.6)α = lim
Δt → 0

Δω
Δt = dω

dt = d2 θ
dt2 ,

where we have taken the limit of the average angular acceleration, α– = Δω
Δt as Δt → 0 .

The units of angular acceleration are (rad/s)/s, or rad/s2 .

In the same way as we defined the vector associated with angular velocity ω→ , we can define α→ , the vector associated

with angular acceleration (Figure 10.7). If the angular velocity is along the positive z-axis, as in Figure 10.5, and dω
dt

is positive, then the angular acceleration α→ is positive and points along the +z- axis. Similarly, if the angular velocity

ω→ is along the positive z-axis and dω
dt is negative, then the angular acceleration is negative and points along the +z -
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axis.

Figure 10.7 The rotation is counterclockwise in both (a) and
(b) with the angular velocity in the same direction. (a) The
angular acceleration is in the same direction as the angular
velocity, which increases the rotation rate. (b) The angular
acceleration is in the opposite direction to the angular velocity,
which decreases the rotation rate.

We can express the tangential acceleration vector as a cross product of the angular acceleration and the position vector. This

expression can be found by taking the time derivative of v→ = ω→ × r→ and is left as an exercise:

(10.7)a→ = α→ × r→ .

The vector relationships for the angular acceleration and tangential acceleration are shown in Figure 10.8.

Figure 10.8 (a) The angular acceleration is the positive z-direction and produces a
tangential acceleration in a counterclockwise sense. (b) The angular acceleration is in the
negative z-direction and produces a tangential acceleration in the clockwise sense.

We can relate the tangential acceleration of a point on a rotating body at a distance from the axis of rotation in the same way
that we related the tangential speed to the angular velocity. If we differentiate Equation 10.4 with respect to time, noting
that the radius r is constant, we obtain

(10.8)at = rα.

Thus, the tangential acceleration at is the radius times the angular acceleration. Equation 10.4 and Equation 10.8 are

important for the discussion of rolling motion (see Angular Momentum).

Let’s apply these ideas to the analysis of a few simple fixed-axis rotation scenarios. Before doing so, we present a problem-
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solving strategy that can be applied to rotational kinematics: the description of rotational motion.

Problem-Solving Strategy: Rotational Kinematics

1. Examine the situation to determine that rotational kinematics (rotational motion) is involved.

2. Identify exactly what needs to be determined in the problem (identify the unknowns). A sketch of the situation
is useful.

3. Make a complete list of what is given or can be inferred from the problem as stated (identify the knowns).

4. Solve the appropriate equation or equations for the quantity to be determined (the unknown). It can be useful
to think in terms of a translational analog, because by now you are familiar with the equations of translational
motion.

5. Substitute the known values along with their units into the appropriate equation and obtain numerical solutions
complete with units. Be sure to use units of radians for angles.

6. Check your answer to see if it is reasonable: Does your answer make sense?

Now let’s apply this problem-solving strategy to a few specific examples.

Example 10.2

A Spinning Bicycle Wheel

A bicycle mechanic mounts a bicycle on the repair stand and starts the rear wheel spinning from rest to a final

angular velocity of 250 rpm in 5.00 s. (a) Calculate the average angular acceleration in rad/s2 . (b) If she now

hits the brakes, causing an angular acceleration of −87.3 rad/s2 , how long does it take the wheel to stop?

Strategy

The average angular acceleration can be found directly from its definition α– = Δω
Δt because the final angular

velocity and time are given. We see that Δω = ωfina − ωinitial = 250 rev/min and Δt is 5.00 s. For part (b),

we know the angular acceleration and the initial angular velocity. We can find the stopping time by using the
definition of average angular acceleration and solving for Δt , yielding

Δt = Δω
α .

Solution
a. Entering known information into the definition of angular acceleration, we get

α– = Δω
Δt = 250 rpm

5.00 s .

Because Δω is in revolutions per minute (rpm) and we want the standard units of rad/s2 for angular

acceleration, we need to convert from rpm to rad/s:

Δω = 250 rev
min · 2π rad

rev · 1 min
60 s = 26.2rad

s .

Entering this quantity into the expression for α , we get

α = Δω
Δt = 26.2 rad/s

5.00 s = 5.24 rad/s2.

b. Here the angular velocity decreases from 26.2 rad/s (250 rpm) to zero, so that Δω is −26.2 rad/s, and α
is given to be –87.3 rad/s2 . Thus,
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10.1

Δt = −26.2 rad/s
−87.3 rad/s2 = 0.300 s.

Significance

Note that the angular acceleration as the mechanic spins the wheel is small and positive; it takes 5 s to produce an
appreciable angular velocity. When she hits the brake, the angular acceleration is large and negative. The angular
velocity quickly goes to zero.

Check Your Understanding The fan blades on a turbofan jet engine (shown below) accelerate from
rest up to a rotation rate of 40.0 rev/s in 20 s. The increase in angular velocity of the fan is constant in time. (The
GE90-110B1 turbofan engine mounted on a Boeing 777, as shown, is currently the largest turbofan engine in
the world, capable of thrusts of 330–510 kN.)

(a) What is the average angular acceleration?

(b) What is the instantaneous angular acceleration at any time during the first 20 s?

Figure 10.9 (credit: “Bubinator”/ Wikimedia Commons)

Example 10.3

Wind Turbine

A wind turbine (Figure 10.10) in a wind farm is being shut down for maintenance. It takes 30 s for the
turbine to go from its operating angular velocity to a complete stop in which the angular velocity function is

ω(t) = [(ts−1 −30.0)2/100.0]rad/s . If the turbine is rotating counterclockwise looking into the page, (a) what

are the directions of the angular velocity and acceleration vectors? (b) What is the average angular acceleration?
(c) What is the instantaneous angular acceleration at t = 0.0, 15.0, 30.0 s?
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Figure 10.10 A wind turbine that is rotating
counterclockwise, as seen head on.

Strategy
a. We are given the rotational sense of the turbine, which is counterclockwise in the plane of the page. Using

the right hand rule (Figure 10.5), we can establish the directions of the angular velocity and acceleration
vectors.

b. We calculate the initial and final angular velocities to get the average angular acceleration. We establish
the sign of the angular acceleration from the results in (a).

c. We are given the functional form of the angular velocity, so we can find the functional form of the angular
acceleration function by taking its derivative with respect to time.

Solution

a. Since the turbine is rotating counterclockwise, angular velocity ω→ points out of the page. But since the

angular velocity is decreasing, the angular acceleration α→ points into the page, in the opposite sense to

the angular velocity.

b. The initial angular velocity of the turbine, setting t = 0, is ω = 9.0 rad/s . The final angular velocity is

zero, so the average angular acceleration is

α– = Δω
Δt = ω − ω0

t − t0
= 0 − 9.0 rad/s

30.0 − 0 s = −0.3 rad/s2.

c. Taking the derivative of the angular velocity with respect to time gives α = dω
dt = (t − 30.0)/50.0 rad/s2

α(0.0 s) = −0.6 rad/s2, α(15.0 s) = −0.3 rad/s2, and α(30.0 s) = 0 rad/s.

Significance

We found from the calculations in (a) and (b) that the angular acceleration α and the average angular acceleration

α– are negative. The turbine has an angular acceleration in the opposite sense to its angular velocity.

We now have a basic vocabulary for discussing fixed-axis rotational kinematics and relationships between rotational
variables. We discuss more definitions and connections in the next section.
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